If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-37=35
We move all terms to the left:
2y^2-37-(35)=0
We add all the numbers together, and all the variables
2y^2-72=0
a = 2; b = 0; c = -72;
Δ = b2-4ac
Δ = 02-4·2·(-72)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*2}=\frac{-24}{4} =-6 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*2}=\frac{24}{4} =6 $
| 6.n=4 | | -30=p-(-17) | | -2x+3(2x+2)=18 | | 6x-2+2=3x+7+2 | | 18x+2=180-88 | | 7x+22=7x+32 | | 64u^2-9=0 | | 0.8m(m-5)=10 | | –5(–j+3)−17j=–12j | | 9b+1=10 | | 3x+x–14=18;x=8 | | x+1=(3x-2)0.6 | | s^2+30=0 | | 7x+30=94 | | a3a=4 | | 9x+1=88+180 | | (2x/x+3)=-6/x+3-2 | | q^2-40=0 | | 3/4z=15/4 | | 3(m–4)+m=2(m–6) | | (15+1)1.6=3x-2 | | |6x-10|=52 | | k^2=69 | | 2.5/18=z/36 | | 9p+3.2=-104.8 | | 9x+1=7x+3=180 | | −4(u+6)=2(3u−4) | | 1+14x=95 | | 3(n+9)=51 | | 1/2(8x^2-10x-3)=0 | | (x+1)1.6=3x-2 | | w^2+13=13 |